Explainers

The importance of artificial intelligence in smartphones

Is this still the future of technology?

Published

on

Have you ever wondered what smartphone brands actually mean when they tell you that their cameras use artificial intelligence (AI)?

With AI now becoming a significant part of our daily lives, we start to look into how this technology found its way into the market, and see whether or not AI truly is the future.

What is Artificial Intelligence?

Artificial intelligence, or AI for short, is a not-so-fairly new concept in the world of technology. What it basically means is that machines are given human-like intelligence through a system of information and programs or applications that are built into machines.

Machines with AI built inside can perform a variety of tasks mostly observed through human intuition like problem solving, gathering knowledge, and logical reasoning — among others. It’s basically making machines smarter and, in a way, more human-like.

Illustrations by Kimchi Lee

AI has been a part of many devices over the past few years, from smart homes to applications on your smartphone. Companies like Amazon and Google have come up with smart home devices that assist people with their day-to-day tasks such as Alexa and Google Assistant.

Businesses with online presence through company websites have also integrated chat boxes and online assistance bots that automatically answer any customer concerns depending on the information given.

How AI found its way to smartphones

Artificial intelligence was often associated with creating robots to perform human-like functions at a much faster, more efficient rate — which is heavily portrayed on mainstream media. Through AI, these machines learn more about the environment they’re in, and carefully adjust to meet the needs of the users. Such a process is called machine learning.

Nowadays, machine learning isn’t just limited to AI robots that learn what people are doing, but has now branched out to what people are thinking, inquiring about, and saying to other people. AI has slowly made its way into other devices that are much more accessible to us, primarily through the internet.

Machine learning is now incorporated into smart home devices, online video streaming websites like YouTube and Netflix, social media websites such as Facebook and Twitter; basically, the technology behind AI constantly learns more about people, their interests, and day-to-day activities.

The newest member of AI-integrated devices are smartphones themselves. Companies like Apple and Google have looked into integrating AI into the processors of their flagship phones — the iPhone and Pixel series, respectively. Early 2018 saw most Android smartphone brands integrate AI within their phones as a way of enhancing the user experience even further; Huawei and ASUS released their new flagship phone lines with their cameras utilizing AI for smarter responses to the environment around the user.

It’s quite possible that smartphones could very well lead the transition of all devices towards machine learning and AI in the near future.

Smartphones with AI

As mentioned, two companies have integrated AI into their smartphones to provide enhanced user experiences in a totally different way. One of these companies is ASUS, with their recently released ZenFone 5 series of smartphones with cameras powered by AI. Its shooters focus primarily on taking better photos and adjusting to the environment around you. The ZenFone 5’s AI Photo Learning allows the phone to learn how you like your photos and adjust the settings accordingly so you don’t have to.

Apart from its cameras, the ZenFone 5 series uses AI to boost overall performance. The base model is powered by a Qualcomm Snapdragon 636 processor, which enables the full utilization of AI features on the phone. The AI Boost technology allows the handset to have an instant hit in performance when running heavy-duty applications and games. Of course, AI in the ZenFone 5 also predicts which apps you will use next and learns which apps you use regularly.

Another company that integrates AI in its smartphones is Huawei, with the Mate 10 and P20 series. They’re powered by the Kirin 970 processor — which boosts overall performance and efficiency using integrated AI. This means that the phones will adjust to how much you use them and maximize performance every step of the way. They also come with Huawei’s EMUI 8.0 with its own set of AI features such as Smart Screen for multitasking and real-time translation during calls.

Much like the ZenFone 5, the Huawei Mate 10 and P20 phones also have cameras powered by AI. This powers the phones’ dual-lens camera setups for scene and object recognition, automatically adjusting the camera’s settings to suit the situation. Huawei also emphasizes producing professional-grade photos by allowing the AI to adjust the camera’s focus on the subject. That way, you are able to achieve a perfect-looking selfie or portrait — without the need to manually adjust the settings for a long period of time.

What we get from AI

Artificial intelligence opens up many opportunities for technology to be like humans in terms of processing thoughts and insights. What AI does is it allows machines to learn more about humans and tailor-fits its processes and capabilities to match us, from search engines to smarter applications. When treated properly, AI can actually deliver better and more efficient ways of dealing with the problems people face almost every single day.

The only downside is AI has the potential to even invade one’s privacy, especially through one’s smartphone. Because the technology is constantly learning more about its user through his or her devices, this opens the door for the data to be retrieved by, quite literally, anyone on the internet.

Because people nowadays access their smartphones almost every chance they get, people who truly know how AI works have the potential to abuse what they know and use it for their own personal gain, either through malicious activities like cyberstalking and cyberbullying, or online attacks like hacking or phishing.

The future of AI

2018 is looking like the year of AI with the unveiling of smartphones and revamped smart devices to upgrade the user experience. The possibilities for artificial intelligence are endless, given its wide usage across any available platform.

For now, it’s intelligent cameras on your smartphones that adjust settings for you to save the hassle of getting the perfect image. Some time in the future, AI could very well exist even on a gaming controller or mirrorless camera to adjust to your needs. However, we have to be aware about the dangers of using AI to its fullest as it can also lead to our own careless actions.

Indeed, the future is bright for artificial intelligence — as long as we use it for the right reasons.

Accessories

C is the key: Explaining USB Type-C

What really makes this new standard special

Published

on

For years, people have grown accustomed to using USB ports for almost all of their devices. Whether you need to charge your phone using your computer or use a controller to play games, you can always count on a USB port to be readily available for you. But 2018 was the year of change and innovation, and the USB port you know and love welcomed change in a big way.

Introducing: USB Type-C, the newest port added to the family. Its round shape brought many new uses and functionalities to your ports. But, how different is it from its much older brothers? How have companies revolutionized its use in mainstream devices?

What is this USB Type-C port?

The USB Type-C (USB-C) port is a not-so-recent discovery in the world of tech. The USB Implementers Forum (USB-IF) developed this USB port back in 2013, and launched it into mass production the following year. The connector is a reversible oval shape, much different from the usual rectangular shape of the previous generation. Its reversibility allows any orientation of the cable for transferring files or charging your device.

USB-IF developed USB-C following the USB 3.1 standard. Such a standard was particularly used because of its faster transfer speeds and charging capabilities. With a USB-C port, you can transfer an hour-long movie in less than 30 seconds, provided you have the appropriate connector for it.

Computer and smartphone manufacturers have incorporated the USB-C port in most of their devices. One of the early adopters of the new technology was Apple, with their redesigned 12-inch MacBook in 2015. Other computer manufacturers followed in the later years, especially with the release of the Thunderbolt 3 technology used for gaming machines.

It’s the younger, faster and more all-around sibling

USB-C has been around for the past four years, and it has gradually developed into an all-around port for users. Alongside Thunderbolt 3, the USB-C port posts the highest data transfer speed across all the available USB connections in existence. Not only that, USB-C ports these days can now connect your devices to external GPUs and displays, and charge your devices. Most USB-C ports even support fast charging for smartphones.

While the technology behind it is supported by a USB 3.1 standard, it’s still very much different from other USB ports that use the USB 3.1 protocol. For starters, the USB 3.1 standard found in USB-C ports are USB 3.1 Gen 2 ports, which offer twice as much performance in data transfer as USB 3.1 Gen 1 ports. Most of the Gen 1 ports also use an older USB Type-A standard, which works for most of your gadgets and peripherals today. However, you would need more adapters for other functionalities, like displaying to a monitor.

But the USB-C port is a far cry from the old USB 2.0 and 3.0 protocols, which have been in existence for 14 years (and counting). Data transfer speeds for those two protocols are significantly slower compared to the USB-C port. An hour-long movie would ideally take around one to two minutes on a USB 2.0 port. Also, older USB protocols don’t really allow you to power up devices that need more electricity. So, charging devices on them might not be as fast.

Supercharged with Thunderbolt 3

So, you’re probably wondering what really makes a USB-C port just that fast. It’s not so much that it’s round, or that it’s new; rather, it’s the technology inside it. Late 2015 saw the arrival of the new Thunderbolt 3 standard specifically for USB-C ports. It first started out in most Windows laptops before making it to the 2016 MacBook Pro and several gaming motherboards.

What Thunderbolt 3 does for USB-C ports is to significantly increase its capacity and capabilities by a mile. We’re talking faster file transfer, heightened gaming experiences, and being able to plug in 4K displays for clearer images. Thunderbolt 3 also allows much bigger devices to be charged at a controlled rate. This is mostly evident with the MacBook Pro, several high-end Ultrabooks, and most recently, the 2018 iPad Pro.

The charging capacity brought about by Thunderbolt 3 deals with a tweak to how USB power delivery works. USB power delivery standards state that each USB standard has specific conditions that must be met to power up devices. Early versions of USB ports only allow a small amount of electricity (2.5W) for delivery, while USB-C allows for the full 100W.  Basically, you went from just powering up your mouse and keyboard to charging your entire laptop.

What’s to come for USB-C?

At this point in time, you’re already living in the future that the USB-C port hopes to achieve. Suddenly, you can simply bring a USB-C cable around, plug it into a powerbank, and you can already charge your expensive MacBook. More and more devices are starting to adopt USB-C because of its potential to enhance your tech experience as a whole.

However, people still find it difficult to switch to USB-C, and for good reason. Most devices continue to use a USB Type-A or micro-USB connector, especially gaming controllers and peripherals. Also, they can argue that the old ports are more accessible. In a not-so-distant future, using a USB-C port could potentially replace a phone’s headphone jack.

The future of USB-C is still uncertain. Companies will iron out the new technology more so it can become mainstream for the future. Let’s just hope that by the time that happens, there won’t be a USB Type-D yet.

Continue Reading

Explainers

No more cords: Wireless charging explained

More and more things are going wireless

Published

on

A lot of things have gone wireless over the past few years. From internet connections to gaming with your friends, the world is becoming more accessible without the need for physical wires. Over the course of 2018, another aspect of our lives has gone this route: charging one’s device.

Perhaps you’ve already heard of wireless charging and its presence in today’s smartphones, particularly the latest Apple devices. You may have even owned something that could wirelessly charge devices. But, what is wireless charging all about?

Let’s break down the technicalities

Wireless charging is a highly technical concept in the world of electronics. Basically, the way it works is that your charging pad contains coils that give off electromagnetic fields. These fields carry energy with them, which can be converted into electricity to power up the compatible device when placed on the pad. 

There are two ways devices can wirelessly charge: inductive charging and resonance charging. Inductive charging is mostly present in low-power charging devices, or ones that require less electricity to power up. This form is limited in range, to the point that the only way your phone charges is if it’s on the pad. Resonance charging, on the other hand, maximizes the range but lessens the amount of charge transferred.

Induction charging

Within the last ten years, several non-profit organizations have created and set wireless charging standards for companies to follow. The most popular of which is the Qi standard established in 2008 by the Wireless Power Consortium (WPC). Other standards include the Power Matters Alliance (PMA) standard in 2012, and Rezence by Alliance for Wireless Power (A4WP) from 2012 to 2015.

All about that Qi

As mentioned earlier, the Qi standard is the most popular wireless charging standard in the world. Most of today’s smartphones and peripherals are supported by Qi. It was established in 2008, with smartphones first adopting it in 2012 through the Nokia Lumia 920.

Qi focuses primarily on energy regulation. Most charging pads that use this standard work with flat surfaces for better energy distribution. Chargers with the Qi standard regulate the amount of charge they give to devices, and immediately go on standby once full. These chargers only activate once a device is placed on top, saving on the cost of electricity in the process.

Magnetic resonance charging

Most smartphone companies have made the choice to implement the Qi standard in their latest models. Apart from Nokia, companies like LG and Samsung have adopted it beginning with the LG Nexus 4 and Samsung Galaxy S6, respectively. In 2017, Apple accepted the standard with the release of their iPhone 8, iPhone 8 Plus, and iPhone X. The company also planned a charging mat called AirPower that could charge multiple devices all at once, but it has yet to be launched.

Why do most companies prefer Qi, but some don’t?

The goal of the WPC is to put forward one standard for wireless charging in the world. The organization developed the Qi standard in such a way that companies are able to integrate them into their products seamlessly. It’s because of this standard that smartphones are aligned to wireless charging pads through magnets for better charging capacity.

Apart from that, the Qi standard allows for more intelligent control over charging your phone. It can tell if your phone is fully charged and will stop sending electricity to avoid overdoing it. Of course, you’ll be able to maximize the charging capacity of your Qi wireless charger if you’re only charging one device at a time.

Wireless charges for the Razer Phone 2, Google Pixel 3, and Xiaomi Mi Mix 3

However, some companies recognize that most people own several smart devices. This is where other organizations like Power Matters Alliance come in. PMA initially used inductive charging as their base for wireless charging, which is what Qi uses, as well. Now, that same organization was able to look into resonance charging, which removes the limitation Qi has.

That’s one of the reasons why Samsung, for example, incorporated both Qi and PMA standards into their Samsung Galaxy S6. With resonance charging, devices can be charged a few centimeters away from the pad. This is especially good for people who use their phones while charging. While WPC is looking to incorporate resonance charging into Qi, certain factors and compatibility issues with devices make the standard less effective.

What does the future hold for wireless charging?

With all the talk about standards and devices, there’s no denying that wireless charging is here to stay. There are talks between the WPC and PMA on possibly coming up with just one true standard for all companies to follow. The best part is that it doesn’t stop there.

Both organizations are looking to expand their technologies beyond smartphones and consumer devices. WPC has already done so with furniture retailers like IKEA to apply wireless charging peripherals to office tables and couches. Meanwhile, PMA is looking to introduce wireless charging to restaurants and establishments, like McDonald’s and Starbucks with wireless-charging tables. It even reached a point wherein tech startups are developing their own hardware for wireless charging from longer distances.

It’s safe to say that the future is definitely bright for wireless charging. Whether companies will start making it a must-have feature for all their products remains to be seen.

Illustrations by MJ Jucutan

Continue Reading

Explainers

Here’s what you need to know about eSIM

The technology behind Apple’s first dual-SIM iPhone

Published

on

When Apple first revealed their new iPhone XS and iPhone XS Max, people were expecting something different. While on the outside nothing seems to have changed, the inside is a whole different story. The most notable change is the introduction of eSIM (embedded SIM) technology, something that they’ve done before with the Apple Watch.

But, what is this eSIM? How different is it from the SIM card that you know and love? And does using an eSIM change the game completely?

Let’s talk about the SIM and eSIM

One of the essentials for any phone in the market is a SIM card. Short for Subscriber Identity Module, a SIM card contains key identification and security features from any network carrier. It is used by these networks to identify their consumers and provide mobile connectivity for them — through calls, texts, and access to the internet. SIM cards also allow you to store information when you decide to switch devices every now and then.

eSIM technology, as the name implies, is embedded into the phone yet it still keeps the same functionalities as before. On devices that were designed with only one SIM card slot, adding an eSIM makes it a virtual dual-SIM machine. 

How have regions adopted eSIM?

As mentioned earlier, this isn’t the first time Apple dealt with eSIM tech. The company had initially launched the eSIM for their Apple Watch Series 3 to give it better connectivity on the go. While Apples continues to incorporate eSIM in its newer Watch Series 4, they’ve decided to take it one step further with the iPhone XS and iPhone XS Max.

However, as of writing, only ten countries in the entire world currently support eSIM. This is mostly due to these countries having the proper infrastructure to support the use of it. While smartphone companies are looking to incorporate this new technology, the market for it seems to be relatively small.

The good and bad about eSIM

Like any other new technology, eSIM comes with its own set of benefits and difficulties — especially for those transitioning from the traditional SIM card. With eSIM installed in your phone, users will no longer have to go through the hassle of buying a specific SIM card.

Ideally, having an eSIM also allows you to switch between networks easily. Apart from an eSIM-capable phone, it also comes with the needed software to make the switching process faster and easier. In essence, you will be able to free up the allocated SIM card slot for a physical SIM card if your device supports it. This is most helpful when you travel abroad, and you need a local number in that country to access their network.

However, there are some processes that prove to be difficult with eSIM, one of which is quickly transferring your phone number to another phone, especially if you frequently switch devices. Unlike traditional SIM cards wherein you just transfer the card, you’d have to contact your service provider to activate the number in your new phone. This could be cumbersome depending on your provider’s customer service.

Furthermore, if the eSIM in your phone becomes corrupted or gets damaged in any way, it’s possible that you would need to replace your whole phone. Because the eSIM is integrated inside your phone, it won’t be easy to pry it out when things go wrong. This wouldn’t be too big of a concern for traditional SIM cards, especially when the card gets destroyed.

Are smartphones ready for the eSIM?

The eSIM technology is still in its young stages, and only a handful of devices currently support it. There is potential for the tech to be implemented across more devices in the future despite only a few countries welcoming them. However, a lot of people still primarily utilize traditional SIM cards given the difficulties of using an eSIM.

In the case of the new iPhones, for example, you can’t create two instances of chat apps on iOS. So even if you have two numbers running at the same time, you’d need a separate phone for another WhatsApp or Viber number, until Apple comes up with a software patch for this.

In the end, the technology’s impact can only be measured once more devices embrace it. But, for now, let’s celebrate how the eSIM gave us the first dual-SIM iPhone and see where the future will take us.

Illustrations by MJ Jucutan

Continue Reading

Trending