Explainers

Setting the VAR: Football’s newest technology

And where better to shine than the 2018 FIFA World Cup

Published

on

The 2018 FIFA World Cup is in full swing, with the last few matches about to take place en route to the Round of 16 on Saturday. While the world’s greatest football players are taking center stage, another main attraction in the tournament is the football world’s latest technology: the Video Assistant Referee.

The Video Assistant Referee or VAR has been adopted in sports like tennis and rugby, and recently by football leagues such as the English FA Cup and the Bundesliga in Germany. Ideally, the VAR helps make decisions for referees much easier and more accurate — especially for crucial, game-changing calls. But is the technology useful and helpful in every possible way?

Illustrations from FIFA.com

What is the VAR?

The VAR is a video system that feeds information to referees on the pitch through a wireless earpiece. Assistant referees  gather the information away from the stadium and forward these to the referees when a call is contested. The VAR marks the huge step football leagues are taking to digitize football, and has been used since last year.

It utilizes a goal line technology that allows the cameras in the stadium to scan the pitch at every minute. With this technology, movement on the pitch is detected at all possible angles and calls can be made more precisely. Assistant referees inside a control room have access to all these cameras and they send live feed to the pitch via tablet or iPad should the referees want to look at the footage themselves.

The VAR reviews game-changing calls on the football pitch at the time a protest is filed. FIFA lists only four game-changing calls to be considered: goals, penalties, direct red card incidents, and mistaken identity. The VAR checks the validity of these calls and sends the information to the referees. Do note, however, that the referees themselves still have the final decision on what call to make.

The system made its debut in a FIFA Club World Cup in December 2017 between Atletico Nacional and Kashima Antlers. The referee rewarded Kashima with a penalty after reviewing a play inside the penalty box.

Putting the VAR to work

2017 also saw the VAR’s debut in the English FA Cup, but it had its own set of controversies along the way. During a quarterfinal match between Tottenham and Rochdale, a goal by Tottenham was reversed for unclear reasons cited by the VAR. German football league Bundesliga also utilized the VAR during its latest season, but received mixed reactions from players and fans.

In the 2018 FIFA World Cup, the VAR takes center stage as a decision-making aide for referees in the group stages. The first instance was a non-call on a foul by Spain’s Diego Costa in their 3-3 epic against Portugal. Costa would slice the Portugese defense to tie the game at 1-1 at the time, but did so while taking down Pepe from Portugal. After the review from the VAR, the referee stood by his decision to count the goal.

The second instance happened in the France-Australia game when French striker Antoine Griezmann was tackled inside the box, yet the referee called for play to continue. Griezmann received a pass from Paul Pogba, and virtually blitzed through the Socceroo’s defensive line. Griezmann was awarded the penalty after reviewing footage from the VAR as the French went on to win, 2-1.

The third instance was in the Peru-Denmark game when another penalty was awarded to Christian Cuerva of Peru. Denmark’s Yussuf Poulsen tackled the Peruvian in the box, yet the referee called for the play to continue until the incident was reviewed via VAR. However, Cuerva missed the penalty and Poulsen scored in another possession to give the Danish the win, 1-0.

A VAR too high or too low?

While the VAR has only been around for well over a year, it isn’t exempt from both praise and criticism. Many people have shown their praises for the newest technology applied to the football world. The VAR now adds certainty and legitimacy to calls made by referees during matches, instead of them making the same wrong call every time. With football players and managers focusing on the tiniest of details to improve their game, information from the VAR becomes important.

The VAR provides an opportunity for football games to be fair and balanced. Referees now have different vantage points to look at when making calls that ultimately change the outcome of the game. People came to see a quality match wherein the players truly shine, but sometimes the referee’s poor decisions hamper that. In this regard, there is no excuse for not making the right decision with all the video evidence available.

However, a lot of people also have strong feelings against using VAR. While the effort to make the right calls is appreciated, it gets in the way of what makes football so special. When referees call for the VAR — especially with contested goals — fans become anxious instead of jubillant. Usually, fans go into a frenzy the moment the ball goes through the net — no replays needed. It’s as if the game feels all too unrealistic because of all the technicalities.

For football players and coaches, the VAR only adds confusion to fans. Because some football stadiums are built without any big screens, fans become unaware of what’s happening when the referee calls for the VAR. Iran’s coach Carlos Queiroz lambasted the use of the VAR for close, judgment calls — particularly the offside call on his squad in a loss to Spain. He believes that the VAR was put in place to correct obvious mistakes by referees, not debatable calls.

Photo from FIFA.com

Final verdict

The VAR is a fairly new technology introduced in the world of football, and surely, it’s not perfect. It’s a bold take on digitalizing football, keeping up with the technological demands of today. Because football is decided by people making the right calls at the right time, the VAR becomes an important part in establishing the basis for such calls. The VAR is a useful solution for referees to make the right decisions on the pitch.

However, we must be critical about how the VAR should play in during very crucial moments in the game. The VAR should help give fans a fair yet exciting football match without losing its spirit. With the Round of 16 coming up, all eyes will be on the VAR and whether it will help make the road to the finals interesting or not.

At the end of the day, football fans came to see the best players in the world do what they do best, and no amount of technology should get in the way of that.

Accessories

C is the key: Explaining USB Type-C

What really makes this new standard special

Published

on

For years, people have grown accustomed to using USB ports for almost all of their devices. Whether you need to charge your phone using your computer or use a controller to play games, you can always count on a USB port to be readily available for you. But 2018 was the year of change and innovation, and the USB port you know and love welcomed change in a big way.

Introducing: USB Type-C, the newest port added to the family. Its round shape brought many new uses and functionalities to your ports. But, how different is it from its much older brothers? How have companies revolutionized its use in mainstream devices?

What is this USB Type-C port?

The USB Type-C (USB-C) port is a not-so-recent discovery in the world of tech. The USB Implementers Forum (USB-IF) developed this USB port back in 2013, and launched it into mass production the following year. The connector is a reversible oval shape, much different from the usual rectangular shape of the previous generation. Its reversibility allows any orientation of the cable for transferring files or charging your device.

USB-IF developed USB-C following the USB 3.1 standard. Such a standard was particularly used because of its faster transfer speeds and charging capabilities. With a USB-C port, you can transfer an hour-long movie in less than 30 seconds, provided you have the appropriate connector for it.

Computer and smartphone manufacturers have incorporated the USB-C port in most of their devices. One of the early adopters of the new technology was Apple, with their redesigned 12-inch MacBook in 2015. Other computer manufacturers followed in the later years, especially with the release of the Thunderbolt 3 technology used for gaming machines.

It’s the younger, faster and more all-around sibling

USB-C has been around for the past four years, and it has gradually developed into an all-around port for users. Alongside Thunderbolt 3, the USB-C port posts the highest data transfer speed across all the available USB connections in existence. Not only that, USB-C ports these days can now connect your devices to external GPUs and displays, and charge your devices. Most USB-C ports even support fast charging for smartphones.

While the technology behind it is supported by a USB 3.1 standard, it’s still very much different from other USB ports that use the USB 3.1 protocol. For starters, the USB 3.1 standard found in USB-C ports are USB 3.1 Gen 2 ports, which offer twice as much performance in data transfer as USB 3.1 Gen 1 ports. Most of the Gen 1 ports also use an older USB Type-A standard, which works for most of your gadgets and peripherals today. However, you would need more adapters for other functionalities, like displaying to a monitor.

But the USB-C port is a far cry from the old USB 2.0 and 3.0 protocols, which have been in existence for 14 years (and counting). Data transfer speeds for those two protocols are significantly slower compared to the USB-C port. An hour-long movie would ideally take around one to two minutes on a USB 2.0 port. Also, older USB protocols don’t really allow you to power up devices that need more electricity. So, charging devices on them might not be as fast.

Supercharged with Thunderbolt 3

So, you’re probably wondering what really makes a USB-C port just that fast. It’s not so much that it’s round, or that it’s new; rather, it’s the technology inside it. Late 2015 saw the arrival of the new Thunderbolt 3 standard specifically for USB-C ports. It first started out in most Windows laptops before making it to the 2016 MacBook Pro and several gaming motherboards.

What Thunderbolt 3 does for USB-C ports is to significantly increase its capacity and capabilities by a mile. We’re talking faster file transfer, heightened gaming experiences, and being able to plug in 4K displays for clearer images. Thunderbolt 3 also allows much bigger devices to be charged at a controlled rate. This is mostly evident with the MacBook Pro, several high-end Ultrabooks, and most recently, the 2018 iPad Pro.

The charging capacity brought about by Thunderbolt 3 deals with a tweak to how USB power delivery works. USB power delivery standards state that each USB standard has specific conditions that must be met to power up devices. Early versions of USB ports only allow a small amount of electricity (2.5W) for delivery, while USB-C allows for the full 100W.  Basically, you went from just powering up your mouse and keyboard to charging your entire laptop.

What’s to come for USB-C?

At this point in time, you’re already living in the future that the USB-C port hopes to achieve. Suddenly, you can simply bring a USB-C cable around, plug it into a powerbank, and you can already charge your expensive MacBook. More and more devices are starting to adopt USB-C because of its potential to enhance your tech experience as a whole.

However, people still find it difficult to switch to USB-C, and for good reason. Most devices continue to use a USB Type-A or micro-USB connector, especially gaming controllers and peripherals. Also, they can argue that the old ports are more accessible. In a not-so-distant future, using a USB-C port could potentially replace a phone’s headphone jack.

The future of USB-C is still uncertain. Companies will iron out the new technology more so it can become mainstream for the future. Let’s just hope that by the time that happens, there won’t be a USB Type-D yet.

Continue Reading

Explainers

No more cords: Wireless charging explained

More and more things are going wireless

Published

on

A lot of things have gone wireless over the past few years. From internet connections to gaming with your friends, the world is becoming more accessible without the need for physical wires. Over the course of 2018, another aspect of our lives has gone this route: charging one’s device.

Perhaps you’ve already heard of wireless charging and its presence in today’s smartphones, particularly the latest Apple devices. You may have even owned something that could wirelessly charge devices. But, what is wireless charging all about?

Let’s break down the technicalities

Wireless charging is a highly technical concept in the world of electronics. Basically, the way it works is that your charging pad contains coils that give off electromagnetic fields. These fields carry energy with them, which can be converted into electricity to power up the compatible device when placed on the pad. 

There are two ways devices can wirelessly charge: inductive charging and resonance charging. Inductive charging is mostly present in low-power charging devices, or ones that require less electricity to power up. This form is limited in range, to the point that the only way your phone charges is if it’s on the pad. Resonance charging, on the other hand, maximizes the range but lessens the amount of charge transferred.

Induction charging

Within the last ten years, several non-profit organizations have created and set wireless charging standards for companies to follow. The most popular of which is the Qi standard established in 2008 by the Wireless Power Consortium (WPC). Other standards include the Power Matters Alliance (PMA) standard in 2012, and Rezence by Alliance for Wireless Power (A4WP) from 2012 to 2015.

All about that Qi

As mentioned earlier, the Qi standard is the most popular wireless charging standard in the world. Most of today’s smartphones and peripherals are supported by Qi. It was established in 2008, with smartphones first adopting it in 2012 through the Nokia Lumia 920.

Qi focuses primarily on energy regulation. Most charging pads that use this standard work with flat surfaces for better energy distribution. Chargers with the Qi standard regulate the amount of charge they give to devices, and immediately go on standby once full. These chargers only activate once a device is placed on top, saving on the cost of electricity in the process.

Magnetic resonance charging

Most smartphone companies have made the choice to implement the Qi standard in their latest models. Apart from Nokia, companies like LG and Samsung have adopted it beginning with the LG Nexus 4 and Samsung Galaxy S6, respectively. In 2017, Apple accepted the standard with the release of their iPhone 8, iPhone 8 Plus, and iPhone X. The company also planned a charging mat called AirPower that could charge multiple devices all at once, but it has yet to be launched.

Why do most companies prefer Qi, but some don’t?

The goal of the WPC is to put forward one standard for wireless charging in the world. The organization developed the Qi standard in such a way that companies are able to integrate them into their products seamlessly. It’s because of this standard that smartphones are aligned to wireless charging pads through magnets for better charging capacity.

Apart from that, the Qi standard allows for more intelligent control over charging your phone. It can tell if your phone is fully charged and will stop sending electricity to avoid overdoing it. Of course, you’ll be able to maximize the charging capacity of your Qi wireless charger if you’re only charging one device at a time.

Wireless charges for the Razer Phone 2, Google Pixel 3, and Xiaomi Mi Mix 3

However, some companies recognize that most people own several smart devices. This is where other organizations like Power Matters Alliance come in. PMA initially used inductive charging as their base for wireless charging, which is what Qi uses, as well. Now, that same organization was able to look into resonance charging, which removes the limitation Qi has.

That’s one of the reasons why Samsung, for example, incorporated both Qi and PMA standards into their Samsung Galaxy S6. With resonance charging, devices can be charged a few centimeters away from the pad. This is especially good for people who use their phones while charging. While WPC is looking to incorporate resonance charging into Qi, certain factors and compatibility issues with devices make the standard less effective.

What does the future hold for wireless charging?

With all the talk about standards and devices, there’s no denying that wireless charging is here to stay. There are talks between the WPC and PMA on possibly coming up with just one true standard for all companies to follow. The best part is that it doesn’t stop there.

Both organizations are looking to expand their technologies beyond smartphones and consumer devices. WPC has already done so with furniture retailers like IKEA to apply wireless charging peripherals to office tables and couches. Meanwhile, PMA is looking to introduce wireless charging to restaurants and establishments, like McDonald’s and Starbucks with wireless-charging tables. It even reached a point wherein tech startups are developing their own hardware for wireless charging from longer distances.

It’s safe to say that the future is definitely bright for wireless charging. Whether companies will start making it a must-have feature for all their products remains to be seen.

Illustrations by MJ Jucutan

Continue Reading

Explainers

Here’s what you need to know about eSIM

The technology behind Apple’s first dual-SIM iPhone

Published

on

When Apple first revealed their new iPhone XS and iPhone XS Max, people were expecting something different. While on the outside nothing seems to have changed, the inside is a whole different story. The most notable change is the introduction of eSIM (embedded SIM) technology, something that they’ve done before with the Apple Watch.

But, what is this eSIM? How different is it from the SIM card that you know and love? And does using an eSIM change the game completely?

Let’s talk about the SIM and eSIM

One of the essentials for any phone in the market is a SIM card. Short for Subscriber Identity Module, a SIM card contains key identification and security features from any network carrier. It is used by these networks to identify their consumers and provide mobile connectivity for them — through calls, texts, and access to the internet. SIM cards also allow you to store information when you decide to switch devices every now and then.

eSIM technology, as the name implies, is embedded into the phone yet it still keeps the same functionalities as before. On devices that were designed with only one SIM card slot, adding an eSIM makes it a virtual dual-SIM machine. 

How have regions adopted eSIM?

As mentioned earlier, this isn’t the first time Apple dealt with eSIM tech. The company had initially launched the eSIM for their Apple Watch Series 3 to give it better connectivity on the go. While Apples continues to incorporate eSIM in its newer Watch Series 4, they’ve decided to take it one step further with the iPhone XS and iPhone XS Max.

However, as of writing, only ten countries in the entire world currently support eSIM. This is mostly due to these countries having the proper infrastructure to support the use of it. While smartphone companies are looking to incorporate this new technology, the market for it seems to be relatively small.

The good and bad about eSIM

Like any other new technology, eSIM comes with its own set of benefits and difficulties — especially for those transitioning from the traditional SIM card. With eSIM installed in your phone, users will no longer have to go through the hassle of buying a specific SIM card.

Ideally, having an eSIM also allows you to switch between networks easily. Apart from an eSIM-capable phone, it also comes with the needed software to make the switching process faster and easier. In essence, you will be able to free up the allocated SIM card slot for a physical SIM card if your device supports it. This is most helpful when you travel abroad, and you need a local number in that country to access their network.

However, there are some processes that prove to be difficult with eSIM, one of which is quickly transferring your phone number to another phone, especially if you frequently switch devices. Unlike traditional SIM cards wherein you just transfer the card, you’d have to contact your service provider to activate the number in your new phone. This could be cumbersome depending on your provider’s customer service.

Furthermore, if the eSIM in your phone becomes corrupted or gets damaged in any way, it’s possible that you would need to replace your whole phone. Because the eSIM is integrated inside your phone, it won’t be easy to pry it out when things go wrong. This wouldn’t be too big of a concern for traditional SIM cards, especially when the card gets destroyed.

Are smartphones ready for the eSIM?

The eSIM technology is still in its young stages, and only a handful of devices currently support it. There is potential for the tech to be implemented across more devices in the future despite only a few countries welcoming them. However, a lot of people still primarily utilize traditional SIM cards given the difficulties of using an eSIM.

In the case of the new iPhones, for example, you can’t create two instances of chat apps on iOS. So even if you have two numbers running at the same time, you’d need a separate phone for another WhatsApp or Viber number, until Apple comes up with a software patch for this.

In the end, the technology’s impact can only be measured once more devices embrace it. But, for now, let’s celebrate how the eSIM gave us the first dual-SIM iPhone and see where the future will take us.

Illustrations by MJ Jucutan

Continue Reading

Trending