Explainers

Why is USB Type-C so important?

Published

on

Over the past decade, devices using the Universal Serial Bus (USB) standard have become part of our daily lives. From transferring data to charging our devices, this standard has continued to evolve over time, with USB Type-C being the latest version. Here’s why you should care about it.

First, here’s a little history

Chances are you’ve encountered devices that have a USB port, such as a smartphone or computer. But what exactly is the USB standard? Simply put, it’s a communication protocol that allows devices to communicate with other devices using a standardized port or connector. It’s basically what language is for humans.

Here’s an example of a USB hub that uses Type-A connectors (Image credit: Anker)

When USB was first introduced to the market, the connectors used were known as USB Type-A. You’re likely familiar with this connector; it’s rectangular and can only be plugged in a certain orientation. To be able to make a connection, a USB Type-A connector plugs into a USB Type-A port just like how an appliance gets connected to a wall outlet. This port usually resides on host devices such as computers and media players, while Type-A connectors are usually tied to peripherals such as keyboards or flash drives.

There are also USB Type-B connectors, and these usually go on the other end of a USB cable that plugs into devices like a smartphone. Due to the different sizes of external devices, there are a few different designs for Type-B connectors. Printers and scanners use the Standard-B port, older digital cameras and phones use the Mini-B port, and recent smartphones and tablets use the Micro-B port.

Samples of the different USB Type-B connectors. From left to right: Standard-B, Mini-B, and Micro-B (Image credit: Amazon)

Specifications improved through the years

Aside from the type of connectors and ports, another integral part of the USB standard lies in its specifications. As with all specifications, these document the capabilities of the different USB versions.

The first-ever version of USB, USB 1.0, specified a transfer rate of up to 1.5Mbps (megabits per second), but this version never made it into consumer products. Instead, the first revision, USB 1.1, was released in 1998. It’s also the first version to be widely adopted and is capable of a max transfer rate of up to 12Mbps.

The next version, USB 2.0, was released in 2000. This version had a significantly higher transfer rate of up to 480Mbps. Both versions can also be used as power sources with a rating of 5V, 500mA or 5V, 100mA.

Next up was USB 3.0, which was introduced in 2008 and defines a transfer rate of up to 5Gbps (gigabits per second) — that’s a tenfold increase from the previous version. This feat was achieved by doubling the pin count or wires to make it easier to spot; these new connectors and ports are usually colored blue compared to the usual black/gray for USB 2.0 and below. USB 3.0 also improves upon its power delivery with a rating of 5V, 900mA.

In 2013, USB was updated to version 3.1. This version doubles what USB 3.0 was capable of in terms of bandwidth, as it’s capable of up to 10Gbps. The big change comes in its power delivery specification, now providing up to 20V, 5A, which is enough to power even notebooks. Apart from the higher power delivery, power direction is bidirectional this time around, meaning either the host or peripheral device can provide power, unlike before wherein only the host device can provide power.

Here’s a table of the different USB versions:

Version Bandwidth Power Delivery Connector Type
USB 1.0/1.1 1.5Mbps/12Mbps 5V, 500mA Type-A to Type-A,

Type-A to Type-B

USB 2.0 480Mbps 5V, 500mA Type-A to Type-A,

Type-A to Type-B

USB 3.0 5Gbps 5V, 900mA Type-A to Type-A,

Type-A to Type-B

USB 3.1 10Gbps 5V, up to 2A,

12V, up to 5A,

20V, up to 5A

Type-C to Type-C,

Type-A to Type-C

Now that we’ve established the background of how USB has evolved from its initial release, there are two things to keep in mind: One, each new version of USB usually just bumps its transfer rate and power delivery, and two, there haven’t been any huge changes regarding the ports and connectors aside from the doubling of pin count when USB 3.0 was introduced. So, what’s next for USB?

USB Type-C isn’t your average connector

After USB 3.1 was announced, the USB Implementers Forum (USB-IF) who handles USB standards, followed it up with a new connector, USB Type-C. The new design promised to fix the age-old issue of orientation when plugging a connector to a port. There’s no “wrong” way when plugging a Type-C connector since it’s reversible. Another issue it addresses is how older connectors hinder the creation of thinner devices, which isn’t the case for the Type-C connector’s slim profile.

Here’s how a USB Type-C connector looks like. Left: Type-A to Type-C cable, Right: Type-C to Type-C cable (Image credit: Belkin)

From the looks of it, the Type-C connector could become the only connector you’ll ever need in a device. It has high bandwidth for transferring 4K content and other large files, as well as power delivery that can power even most 15-inch notebooks. It’s also backwards compatible with previous USB versions, although you might have to use a Type-A-to-Type-C cable, which are becoming more common anyway.

Another big thing about USB Type-C is that it can support different protocols in its alternate mode. As of last year, Type-C ports are capable of outputting video via DisplayPort or HDMI, but you’ll have to use the necessary adapter and cable to do so. Intel’s Thunderbolt 3 technology is also listed as an alternate mode partner for USB Type-C. If you aren’t familiar with Thunderbolt, it’s basically a high-speed input/output (I/O) protocol that supports the transfer of both data and video on a single cable. Newer laptops have this built in.

A USB Type-C Thunderbolt 3 port (with compatible dock/adapter) does everything you’ll ever need when it comes to I/O ports (Image credit: Intel)

Rapid adoption of the Type-C port has already begun, as seen on notebooks such as Chromebooks, Windows convertibles, and the latest Apple MacBook Pro line. Smartphones using the Type-C connector are also increasing in number.

Summing things up, the introduction of USB Type-C is a huge step forward when it comes to I/O protocols, as it can support almost everything a consumer would want for their gadgets: high-bandwidth data transfer, video output, and charging.

SEE ALSO: SSD and HDD: What’s the difference?

[irp posts=”9623″ name=”SSD and HDD: What’s the difference?”]

Explainers

Here’s how India is trying to be China in the smartphone game

The world’s second-largest smartphone market has more to offer

Published

on

China is practically the world’s production powerhouse. And India wants to follow the same path. India’s Central government has approved three schemes to enable large scale electronics manufacturing and attract fresh investments worth almost INR 50,000 crore (US$ 6.3 billion) in the sector.

The government aims to provide companies a production-linked incentive of 4 percent to 6 percent on incremental sales for locally made goods over a period of five years. This not only includes mobile phone manufacturing but also assembly, testing, marking and packaging.

The other policy offers a 25 percent financial incentive for capital expenditure that goes towards “the manufacturing of goods that constitute the supply chain of an electronic product”. With these incentives, the government is optimistic that companies will come to India, contribute to progressing infrastructure, and make export-quality goods.

Inauguration of Samsung’s Noida Factory in India

According to their estimates, domestic value addition for mobile phones is expected to witness 35 to 40 percent jump by 2025, from the current 20-25 percent.

So far, companies have focused on assembling equipment like smartphones in India. A huge chunk of the components are still imported. These policy changes could act as a stimulant to locally source electrical components, semiconductors, as well as develop production clusters.

Bangalore and Hyderabad are infamous for their IT Tech Parks that house thousands of employees from IT service firms like TCS, Infosys, Accenture, and many more. Similarly, the government wants to create production clusters that can develop an eco-system of their own. These clusters can create a seamless supply chain when paired with proper land, air, and shipment infrastructure.

The timing of the announcement is what matters the most. China is embroiled in a trade war with the US for quite some time and we’ve seen how a giant like Huawei got caught in the cross-fire. Companies are skeptical about depending too much on China for production and sourcing. Hence, countries like Vietnam have witnessed a huge inflow of foreign investment from the likes of Nintendo, Foxconn, and even Samsung.

India is very much like Vietnam. A developing economy that’s on the look-out for foreign investment and enhances local production capabilities. This not only helps the government increase its tax revenue via taxation, but also provides employment. Considering the current Coronavirus crisis, it’s obvious that these plans may not materialize soon. But, as soon as the storm is gone, companies would want to find an alternative to China.

Prime Minister, Narendra Modi with Apple CEO, Time Cook

It’s reported that the alleged low-cost iPhone from Apple has been delayed due to the pandemic. Irrespective of the current health crisis, Apple has been trying to ramp up its local production in India and has done so, cautiously. India is the world’s second-largest smartphone market and every brand wants a piece of the cake. Realme and Xiaomi have been intensely fighting for supremacy, Samsung continues to lead via the offline market, and OPPO and Vivo have flooded all commercial banners with their products.

Xiaomi currently has seven plants in India, major ones being at Sri City and Sriperumbedur. It also makes its televisions in Tirupathi. Manu Kumar Jain, Vice President, Xiaomi, and Managing Director, Xiaomi India said that 95 percent of Xiaomi’s phones are made in India with 65 percent of a phone’s value being sourced locally. The government has been successful in compelling companies to make in India because it consistently kept on raising import duty on smartphones.

Samsung already has the world’s largest mobile phone factory in India that assembles top-tier variants, ready for export. We don’t know the volume it churns out right now, but their long-term investment is a precedent for other brands to take the market seriously. OnePlus has a research facility in Hyderabad where it makes software products intended for the Indian market.

Samsung’s factory in Noida, India

According to industry ICEA, the NOIDA region (a part of Delhi NCR) has close to 80 mobile manufacturing factories that provide employment to approximately 50,000 people. It’s normal today to see companies release press notes announcing new facilities across the country that’ll employ thousands of people.

Prime Minister Narendra Modi kickstarted the “Make in India” campaign five years ago to encourage foreign companies to invest and build in India. While its effects are debatable in a few industries, there’s no doubt that the mobile industry has picked up exponentially. State governments of Karnataka, Andhra Pradesh, Telangana, Uttar Pradesh, and Tamil Nadu have played a major role in establishing these clusters that symbolize progress.

Engineers are widely available in India, the country has developed multiple ports under the private-public model, and numerous airports are under construction. India is already the world’s second-largest smartphone maker, but the gap is huge. It’s about briding this. Obviously, the scale at which China produces is unmatchable. But that cannot undermine India’s efforts to be more relevant on the global stage. From a purely consumption-based economy, it’s slowly trying to turning into a production backed state.

Continue Reading

Explainers

Explaining smartphone display refresh rates

Are they really any different from PC displays?

Published

on

Smartphones, little by little, are turning into mini-PCs with the features that come with it. From browsing on social media to playing video games, technology is slowly adopting a more “on-the-go” lifestyle. Recently, smartphones have acquired another feature that your own desktop or laptop already has.

Some of the recently released premium and gaming smartphones now come with displays having their own dedicated refresh rate. Refresh rates aren’t new, but to see it on a compact device has a lot of people wondering. How different or similar is it to a PC’s refresh rate? And is it actually something good to have?

A crash course on refresh rates

A display’s refresh rate, basically is the number of times your display updates every second. Your screen usually takes a few seconds to just a second to load new images, depending on that rate. For example, a 60Hz refresh rate means that in one second, any image on your display is refreshed 60 times. Your eyes wouldn’t catch it fast enough, but that’s how your display works.

For most PC displays, the default is at 60Hz with companies releasing displays that range up to 240Hz. You mostly see this in displays fit for gaming purposes, since gamers prefer the higher refresh rate for improved performance. If you’re someone who mostly likes to watch movies, it really doesn’t matter how high the refresh rate is.

Note that this is entirely different from frame rates, in that these show how many images are produced within a second. Although, having a high refresh rate allows you to perform a lot better because it is optimized for higher frame rates. That’s why you see some gamers complain about playing on a 60Hz display.

Transitioning to a smartphone near you

Eventually, the concept of amping up a refresh rate will reach the world of smartphones. In fact, the OnePlus 7 Pro was actually the first mainstream smartphone to have a display with a 90Hz refresh rate. Most smartphones, even budget ones, have displays built with a 60Hz refresh rate. Something about it just makes you scroll through your phone without feeling too dizzy, unless you scroll too fast.

Premium smartphones mostly incorporate either a 90Hz or 120Hz refresh rate for a smoother UI experience. With higher refresh rates, scrolling through your phone feels a lot smoother without risking an eye sore. Of course, these smartphones do cost significantly more than your average, everyday smartphone.

Apart from premium smartphones, gaming smartphones have also incorporated higher than 60Hz refresh rates. Phones like the Razer Phone 2 and the ASUS ROG Phone 2 both come with a 120Hz refresh rate to suit mobile gamers, especially FPS (first-person shooter) gamers. With these higher refresh rates, mobile gamers see clearer images with less motion blur involved.

Do you really need all the hertz?

That begs the question: what do you need a high refresh rate screen for? When you use a PC, 60Hz is already good for most tasks and games. Trying to go for higher refresh rates usually means that you’re doing a lot more than the ordinary. Tasks such as heavy-duty data analytics or hardcore gaming are optimal for higher refresh rates.

The same logic works for smartphone displays, except on a smaller screen size. A lot of what you can do, you’re able to do so on 60Hz displays. If you’re just using your phone to browse social media, watch Netflix on the daily, and play games casually, you don’t need anything higher. Although, it is a premium to have if you want buttery smooth software.

If you play games competitively, you would prefer higher refresh rates just like in gaming monitors. Higher refresh rates allow you to perform at an optimal level when going for higher frame rates. We’re talking close to no image tearing or motion blur when you play PUBG Mobile or Call of Duty. While you can perform well at the default 60Hz, going for a 90Hz or 120Hz ideally makes the experience better.

Some final thoughts

Smartphone display refresh rates have always been a part of the technology. These displays were built in a way that everyone can benefit from them. It’s only fairly recently that smartphone companies came up with a way to make the experience a lot smoother. Hence, smartphones started incorporating higher refresh rates.

It almost feels like having that high refresh rate is a premium, given only select smartphones have it. But it’s a premium that you don’t really need unless you have a good reason to. Apart from the cost of experiencing it, it really depends on what you plan to do with your smartphone.

At the end of the day, it’s better to ask yourself if it’s a feature worth getting. If it’s something you feel you can’t live without, by all means, right?

Continue Reading

Automotive

Stranger Things 3: What exactly is an ignition cable?

Possessed Billy knew what he was doing

Published

on

By now, you’ve probably seen the third and newest season of Stranger Things on Netflix. If you still haven’t, it goes without saying that there are spoilers ahead and you should stay away from this article.

Seeing a pop culture reference such as Stranger Things together with the seemingly unrelated world of automotive in one writeup such as this could be strange (pun intended) for some. We really don’t mind and thought it would be a fun and unique way to talk about the show and learn a few things from it, as well.

So we ask the question: What exactly is an ignition cable?

The ignition cable is part of a vehicle’s ignition system. In simplest terms, it’s a mechanism that starts the engine. By generating a high voltage from the car’s battery to the spark plugs in its engine, it causes them to ignite the engine’s combustion chambers and get it up and running.

And in order to transfer that voltage from the source to the engine, you’ll need an ignition cable as it’s like a subway system that acts as pathways for the voltage to pass through. So if the ignition cable is not present, there’s no way to start the car.

Back to Stranger Things, Billy (although already possessed by the Mind Flayer) obviously still had his knowledge on cars so he took away the ignition cable trapping our favorite gang at Starcourt Mall’s parking lot.

Just to further stress the importance of an ignition cable and the whole ignition system for that matter, we’d like to visit other possibilities and ask, “What if Billy didn’t take it away?”

Well, the plan was for Eleven and her group to go to Bauman’s secret place and stay safe while Joyce, Hopper, and the rest try to close the portal and render the Mind Flayer powerless. If their ignition cable was intact, they’d be a lot safer away from the Mind Flayer although we wouldn’t be able to see that amazing fireworks scene inside the mall.

Through this, we see the importance of that one small part under the hood of the car. In real life, it really pays to make sure that everything is in good working condition and that one faulty cable could mean trouble for you if remained unaddressed — unless there’s a car on display inside a mall somewhere that you can take spare parts from!

SEE ALSO: Netflix launches AR Trailer with Stranger Things 3

 

Continue Reading

Trending