Explainers

SSD and HDD: What’s the difference?

Published

on

For the past few years, solid-state drives (SSDs) have become quite popular in the computing world, mostly because of how fast they are compared to hard disk drives (HDDs). So, what exactly sets an SSD apart from an HDD?

Nowadays, computers use non-volatile medium for storage, which means data that’s stored in it doesn’t get lost once the computer shuts down. Storage for modern-day computers and notebooks have been handled by hard disk drives for the longest time and it’s only now, with SSDs becoming more affordable, that consumers are seeing a different storage medium in their computers.

Hard disk drives have mechanical parts

If you aren’t familiar, hard disk drives store data on circular disks made up of aluminum, glass, or ceramic that are coated with a magnetic layer, often called platters. Since these platters are responsible for holding the data, the storage capacity of an HDD is dependent on how many platters it has.

The big disks are the platters and the arm hovering above is the actuator arm.

When the computer’s processor sends out instructions to read and write data, the motor on the drive moves the actuator arm across the platter. At the end of the actuator arm are the read/write heads which are made up of tiny magnets responsible for reading data already stored on the platter or writing new data on the empty spaces on the platter. The combined movement of the actuator arm and the rotation of the platter allows the computer to read and write data, which is kind of like the arm of a record player touching a vinyl record to play music.

Having all these moving parts means an HDD’s read and write speed is dependent on how fast the platters can rotate and how fast the actuator arm can track locations on the platter. These parts can only move up to a certain speed or else they’ll break down, and nobody wants a broken storage device. As with all mechanical parts, heat and noise are by-products of their movements, which is why an HDD can become hot and/or noisy during operation.

Solid-state drives have no moving parts

From its name, an SSD is a drive that uses a type of solid-state storage called flash memory, which is also a non-volatile storage medium, to store and retrieve data. Each flash memory chip found in the circuit board of an SSD contains memory cells that are made up of floating-gate transistors, which are a special type of transistor that can store or discharge an electrical charge in its cage-like part called the floating gate. The storing capability of these transistors is what allows the data to remain, even when there’s no electricity flowing through them.

Inside an SSD is a circuit board with a bunch of embedded chips, including the flash memory, controller, and cache.

As mentioned, an SSD doesn’t have moving parts like the actuator arm and motors of an HDD. Instead, it has an embedded processor called a controller. Much like the computer’s processor, the controller does all the heavy lifting, as it’s the one responsible for locating the blocks of memory where data can be read or written to.

This is also the reason why SSDs perform faster than HDDs; since they don’t need to wait for any moving parts to read or write data, the controller just needs to receive the instructions from the computer’s processor and it can start reading or writing data.

SSDs may not suffer from a mechanical breakdown, but they’re far from faultless. Flash memory can only have data written and erased a finite number of times before its cells degrade and become unreliable. This means an SSD can only write a certain amount of data before it fails, which is why SSD specification sheets typically include Terabytes Written (TBW), so consumers know how much data can be written into the drive before it eventually fails. However, SSDs these days can last more than ten years in typical day-to-day usage.

Both storage mediums have pros and cons

So, is a solid-state drive better than a hard disk drive, or vice-versa? Sadly, there’s no simple answer to this question, as it all depends on the needs of the consumer, which usually involves speed and storage capacity.

On one hand, if a person wants faster read/write times, an SSD is the clear winner, but you’ll lose out on storage capacity, since most SSDs today start from 120GB and can only go up to 1TB or 2TB. Mind you, those high-capacity SSDs will surely burn a big hole in your wallet.

On the other hand, if a person values capacity more, an HDD is the better option, with drives typically ranging from 500GB to 6TB of storage capacity for mainstream HDDs. Also, HDDs don’t cost an arm and a leg compared to SSDs if you want to get large-capacity ones.

With these in mind, there’s no stopping consumers from having both an SSD and an HDD in the same system. Setting up an SSD as your main drive with the operating system and other important software, while having a secondary HDD to store all your media and personal files, would net you the best of both worlds: a speedy system boot up without sacrificing storage space.

[irp posts=”2500″ name=”LTE-A Explained”]

Explainers

The industry’s next big thing: Cloud gaming explained

It’s gaming on the go, but for internet that’s not slow

Published

on

Everybody’s getting into gaming these days, and you can’t blame them. With the pandemic continuing its ravaging ways in the world, people turn to their consoles or PCs for some action. However, not everyone can afford all the expensive PCs and the next-gen consoles when they come out.

Instead, a new player comes into the fray with a pretty great idea. What would happen if you can just play your favorite games from any device? Also, what if we told you that this won’t take up space on your device at all? This is basically what cloud gaming offers to you: a way to play games from any device at any time!

So, how does that actually work? What do you need to ensure quality gameplay, and should you even consider it?

The basics of playing on a cloud

On paper, it’s pretty easy to understand how cloud gaming works. Basically, you have access to a library of games from a cloud storage service. When you subscribe to the service, you can virtually play your library from any device regardless of the specs. Also, you don’t have to worry about storage problems since these games are stored on a server.

It’s no joke when these companies tell you that you can play your games on any device. With their dedicated data servers, they make sure that the games run smoothly once you access them from the cloud. On your end, you will need a strong and consistent internet connection to play the games smoothly.

Several companies already have cloud gaming software available for people to subscribe to. Some examples include NVIDIA’s GeForce Now, Microsoft’s xCloud, and Google Stadia — all of which store PC games on a server. These companies even take the time to update their server hardware every so often to bring the best possible quality.

System requirements for cloud gaming

Much like your ordinary PC or gaming console, companies that run cloud gaming servers need certain equipment to run smoothly. First, these companies must set up active data centers and server farms that run the games. These data centers ensure that games are up and running, while reducing latency. In other words, these serve as the powerhouse of cloud gaming.

Next on the list is the network infrastructure necessary to send these to the users. To ensure that people don’t experience lags when they play their games, companies also invest in acquiring proper data connections. However, in most cases, this isn’t something these companies have control over; it’s mostly coming from their available internet service providers.

On the front-end, companies also provide dedicated hardware and software to house the cloud. For example, NVIDIA integrated GeForce Now into their own cloud streaming device, the NVIDIA Shield back in 2013. Meanwhile, Google Stadia relies heavily on using pre-existing Google software like Google Chrome and the Stadia App.

Something great to offer, for the most part

Cloud gaming services offer something unique in the industry. Essentially, it eliminates the user from investing so much into buying expensive PCs as it allows people to play from virtually any device. Whether it’s on a smartphone, laptop, or even a smart TV, people get access to games at high frame rates without an RTX 3080.

Furthermore, the game and save files are stored on the cloud, and don’t take up any storage on your devices. This is greatly beneficial for people who are already running on limited storage space, especially if they play Call of Duty: Warzone. With everything stored on the cloud, you don’t need most of the 512GB of SSD storage.

However, one of the biggest issues with cloud gaming revolves around the thing it’s based on: the internet. Specifically, it’s on the user’s internet connection as these services require the fastest internet to run smoothly on any device. Basically, you will need either an Ethernet or a 5G wireless connection to ensure the lowest latency possible.

That infrastructure isn’t readily available in most markets, which is a prominent issue among several third-world countries. Furthermore, even if there are companies that have 5G in their pipeline, these same providers also put data caps on it. Even if the user can play at an optimal frame rate, they’re doing so with a restriction in place.

Does this new player have any place?

With the world continuously opening its arms to the gaming industry, innovation becomes the forefront of success. Companies come up with a variety of gaming technologies that seek to cater to a wide variety of people. From individual hardware to pre-built systems, gaming often revolved around these things.

With cloud gaming, it gives people not just another option within the mix. Rather, it seeks to challenge the notion of availability and accessibility, and give it a viable solution. Essentially, it takes away the physical hardware limitations on the user’s end, and makes it available for everyone.

But like most gaming technologies, everything is still limited somehow. These systems still experience bottlenecks both on the manufacturer and the user’s end. In the end, it will depend on how much you’re willing to shell out for them, and how willing you are to accept the risks.

Illustrations by Raniedel Fajardo

Continue Reading

Explainers

Your MagSafe Questions Answered

Do you really need it?

Published

on

If you’ve ever owned an old MacBook before, you’ll know that those chargers magnetically snap onto place. That particular technology is called the ‘MagSafe’.

After the MacBook Pro touch bar and USB-C overhaul last 2016, everyone thought MagSafe ended for good. Not until they announced the new MagSafe for the iPhone 12 series four years later.

The MagSafe technology might not be new but the implementation for the latest iPhones makes the technology even more usable. Other than the securely-placed phone for wireless charging, there are a plethora of case manufacturers who continuously work on future accessories that support MagSafe existing ecosystem.

But is the Apple MagSafe more than just a gimmick? And do you really need it?

Watch our in-depth Apple MagSafe explainer here.

Continue Reading

Explainers

Here’s how India is trying to be China in the smartphone game

The world’s second-largest smartphone market has more to offer

Published

on

China is practically the world’s production powerhouse. And India wants to follow the same path. India’s Central government has approved three schemes to enable large scale electronics manufacturing and attract fresh investments worth almost INR 50,000 crore (US$ 6.3 billion) in the sector.

The government aims to provide companies a production-linked incentive of 4 percent to 6 percent on incremental sales for locally made goods over a period of five years. This not only includes mobile phone manufacturing but also assembly, testing, marking and packaging.

The other policy offers a 25 percent financial incentive for capital expenditure that goes towards “the manufacturing of goods that constitute the supply chain of an electronic product”. With these incentives, the government is optimistic that companies will come to India, contribute to progressing infrastructure, and make export-quality goods.

Inauguration of Samsung’s Noida Factory in India

According to their estimates, domestic value addition for mobile phones is expected to witness 35 to 40 percent jump by 2025, from the current 20-25 percent.

So far, companies have focused on assembling equipment like smartphones in India. A huge chunk of the components are still imported. These policy changes could act as a stimulant to locally source electrical components, semiconductors, as well as develop production clusters.

Bangalore and Hyderabad are infamous for their IT Tech Parks that house thousands of employees from IT service firms like TCS, Infosys, Accenture, and many more. Similarly, the government wants to create production clusters that can develop an eco-system of their own. These clusters can create a seamless supply chain when paired with proper land, air, and shipment infrastructure.

The timing of the announcement is what matters the most. China is embroiled in a trade war with the US for quite some time and we’ve seen how a giant like Huawei got caught in the cross-fire. Companies are skeptical about depending too much on China for production and sourcing. Hence, countries like Vietnam have witnessed a huge inflow of foreign investment from the likes of Nintendo, Foxconn, and even Samsung.

India is very much like Vietnam. A developing economy that’s on the look-out for foreign investment and enhances local production capabilities. This not only helps the government increase its tax revenue via taxation, but also provides employment. Considering the current Coronavirus crisis, it’s obvious that these plans may not materialize soon. But, as soon as the storm is gone, companies would want to find an alternative to China.

Prime Minister, Narendra Modi with Apple CEO, Time Cook

It’s reported that the alleged low-cost iPhone from Apple has been delayed due to the pandemic. Irrespective of the current health crisis, Apple has been trying to ramp up its local production in India and has done so, cautiously. India is the world’s second-largest smartphone market and every brand wants a piece of the cake. Realme and Xiaomi have been intensely fighting for supremacy, Samsung continues to lead via the offline market, and OPPO and Vivo have flooded all commercial banners with their products.

Xiaomi currently has seven plants in India, major ones being at Sri City and Sriperumbedur. It also makes its televisions in Tirupathi. Manu Kumar Jain, Vice President, Xiaomi, and Managing Director, Xiaomi India said that 95 percent of Xiaomi’s phones are made in India with 65 percent of a phone’s value being sourced locally. The government has been successful in compelling companies to make in India because it consistently kept on raising import duty on smartphones.

Samsung already has the world’s largest mobile phone factory in India that assembles top-tier variants, ready for export. We don’t know the volume it churns out right now, but their long-term investment is a precedent for other brands to take the market seriously. OnePlus has a research facility in Hyderabad where it makes software products intended for the Indian market.

Samsung’s factory in Noida, India

According to industry ICEA, the NOIDA region (a part of Delhi NCR) has close to 80 mobile manufacturing factories that provide employment to approximately 50,000 people. It’s normal today to see companies release press notes announcing new facilities across the country that’ll employ thousands of people.

Prime Minister Narendra Modi kickstarted the “Make in India” campaign five years ago to encourage foreign companies to invest and build in India. While its effects are debatable in a few industries, there’s no doubt that the mobile industry has picked up exponentially. State governments of Karnataka, Andhra Pradesh, Telangana, Uttar Pradesh, and Tamil Nadu have played a major role in establishing these clusters that symbolize progress.

Engineers are widely available in India, the country has developed multiple ports under the private-public model, and numerous airports are under construction. India is already the world’s second-largest smartphone maker, but the gap is huge. It’s about briding this. Obviously, the scale at which China produces is unmatchable. But that cannot undermine India’s efforts to be more relevant on the global stage. From a purely consumption-based economy, it’s slowly trying to turning into a production backed state.

Continue Reading

Trending