Explainers

No more cords: Wireless charging explained

More and more things are going wireless

Published

on

A lot of things have gone wireless over the past few years. From internet connections to gaming with your friends, the world is becoming more accessible without the need for physical wires. Over the course of 2018, another aspect of our lives has gone this route: charging one’s device.

Perhaps you’ve already heard of wireless charging and its presence in today’s smartphones, particularly the latest Apple devices. You may have even owned something that could wirelessly charge devices. But, what is wireless charging all about?

Let’s break down the technicalities

Wireless charging is a highly technical concept in the world of electronics. Basically, the way it works is that your charging pad contains coils that give off electromagnetic fields. These fields carry energy with them, which can be converted into electricity to power up the compatible device when placed on the pad. 

There are two ways devices can wirelessly charge: inductive charging and resonance charging. Inductive charging is mostly present in low-power charging devices, or ones that require less electricity to power up. This form is limited in range, to the point that the only way your phone charges is if it’s on the pad. Resonance charging, on the other hand, maximizes the range but lessens the amount of charge transferred.

Induction charging

Within the last ten years, several non-profit organizations have created and set wireless charging standards for companies to follow. The most popular of which is the Qi standard established in 2008 by the Wireless Power Consortium (WPC). Other standards include the Power Matters Alliance (PMA) standard in 2012, and Rezence by Alliance for Wireless Power (A4WP) from 2012 to 2015.

All about that Qi

As mentioned earlier, the Qi standard is the most popular wireless charging standard in the world. Most of today’s smartphones and peripherals are supported by Qi. It was established in 2008, with smartphones first adopting it in 2012 through the Nokia Lumia 920.

Qi focuses primarily on energy regulation. Most charging pads that use this standard work with flat surfaces for better energy distribution. Chargers with the Qi standard regulate the amount of charge they give to devices, and immediately go on standby once full. These chargers only activate once a device is placed on top, saving on the cost of electricity in the process.

Magnetic resonance charging

Most smartphone companies have made the choice to implement the Qi standard in their latest models. Apart from Nokia, companies like LG and Samsung have adopted it beginning with the LG Nexus 4 and Samsung Galaxy S6, respectively. In 2017, Apple accepted the standard with the release of their iPhone 8, iPhone 8 Plus, and iPhone X. The company also planned a charging mat called AirPower that could charge multiple devices all at once, but it has yet to be launched.

Why do most companies prefer Qi, but some don’t?

The goal of the WPC is to put forward one standard for wireless charging in the world. The organization developed the Qi standard in such a way that companies are able to integrate them into their products seamlessly. It’s because of this standard that smartphones are aligned to wireless charging pads through magnets for better charging capacity.

Apart from that, the Qi standard allows for more intelligent control over charging your phone. It can tell if your phone is fully charged and will stop sending electricity to avoid overdoing it. Of course, you’ll be able to maximize the charging capacity of your Qi wireless charger if you’re only charging one device at a time.

Wireless charges for the Razer Phone 2, Google Pixel 3, and Xiaomi Mi Mix 3

However, some companies recognize that most people own several smart devices. This is where other organizations like Power Matters Alliance come in. PMA initially used inductive charging as their base for wireless charging, which is what Qi uses, as well. Now, that same organization was able to look into resonance charging, which removes the limitation Qi has.

That’s one of the reasons why Samsung, for example, incorporated both Qi and PMA standards into their Samsung Galaxy S6. With resonance charging, devices can be charged a few centimeters away from the pad. This is especially good for people who use their phones while charging. While WPC is looking to incorporate resonance charging into Qi, certain factors and compatibility issues with devices make the standard less effective.

What does the future hold for wireless charging?

With all the talk about standards and devices, there’s no denying that wireless charging is here to stay. There are talks between the WPC and PMA on possibly coming up with just one true standard for all companies to follow. The best part is that it doesn’t stop there.

Both organizations are looking to expand their technologies beyond smartphones and consumer devices. WPC has already done so with furniture retailers like IKEA to apply wireless charging peripherals to office tables and couches. Meanwhile, PMA is looking to introduce wireless charging to restaurants and establishments, like McDonald’s and Starbucks with wireless-charging tables. It even reached a point wherein tech startups are developing their own hardware for wireless charging from longer distances.

It’s safe to say that the future is definitely bright for wireless charging. Whether companies will start making it a must-have feature for all their products remains to be seen.

Illustrations by MJ Jucutan

Explainers

The secrets behind iPhone 13’s Cinematic Mode

Together with Apple’s VP for iPhone Product Marketing as well as their Human Interface Designer

Published

on

For the first time ever, we had a three-way interview with Apple’s VP for iPhone Product Marketing, Kaiann Drance as well as one of their leading Human Interface Designers, Johnnie Manzari. If you’re not starstruck enough, both of them appeared in Apple’s September 2021 Keynote event!

Other than new camera sensors, newer camera features are also found on the new iPhone 13 Series. One of those is the new Cinematic Mode.

If you’ve watched some of our latest iPhone videos including the Sierra Blue iPhone 12 Pro Max unboxing, we’ve let you take a sneak peek on that new video mode.

We’re not gonna lie, it’s one amazing camera feature Apple has managed to deliver.

But what are the secrets behind it? And are you curious how technicalities work?

Watch our 16-minute interview with the Apple executives explaining why Cinematic Mode is the next big thing in mobile videography.

 

Continue Reading

Apps

How Google alerted the Philippines during the July earthquake

Crowd-sourcing data

Published

on

Illustrations by Kris Blanco

Back in July, an earthquake rocked Metro Manila. Unbeknownst to most but noticed by some, a globally renowned company was helping everyone through the natural incident: Google. In the few minutes leading up to and during the 6.7 magnitude earthquake, Android users received important alerts warning them of the ongoing tremors. Though it wasn’t the dreaded Big One, the alert afforded attentive users a few precious seconds to either seek appropriate cover or stop doing dangerous tasks.

Incidentally, the tech surrounding Google’s earthquake alert system wasn’t just hastily built on ongoing databases or social media. Google actually packed in a fully responsive earthquake sensor for Android phones.

Faster than an earthquake

The forever-increasing speed of technology has always been a contentious element since the rise of smartphones. Developers and users alike have wondered how accurate or quick our favorite devices can warn us of things happening around us. There’s even an XKCD comic about how Twitter can warn us of an earthquake minutes before it reaches the reader.

Over the years, technology has developed new ways to deliver alerts. From simple weather apps to city-wide messaging systems, users can receive warnings in a timely fashion. Practically nothing is a surprise anymore with the right technology.

That said, Google has successfully developed a new system that can rely on other Android smartphones to accurately tell whether or not an earthquake is happening.

A quake detector in your pocket

Speaking to Android Police, the feature’s lead engineer Marc Stogaitis described how Google’s earthquake sensor leveraged other devices to tell users about the quake. It all revolves around the different sensors built inside your phone.

As it is, every smartphone comes with a host of sensors to support its different functions. A light detector can seamlessly adjust brightness and camera settings, and a gyroscope can support compasses, for example. With earthquakes, the biggest element to ponder on is a smartphone’s movement and vibrations during an earthquake.

According to the lead engineer, figuring out the metrics for detecting an earthquake wasn’t a problem. After decades of accurate seismograph technology, developers already have an idea on what they need to measure.

However, the technology does not stop there. Naturally, there are hiccups to relying on just a single (or even every) phone’s data. For one, a city-wide messaging system can set off everyone’s phone in a single area, potentially causing false positives. Plus, relying on a single phone is definitely tricky. There are multiple actions which can cause vibrations akin to an earthquake.

Crowdsourcing a quake

The feature doesn’t rely on just one phone. It doesn’t tap into every Android phone in an area either. Instead, it collates data from phones plugged into a charger. Naturally, a plugged-in phone is the most reliable barometer in terms of battery reliability. They won’t die out in the middle of an earthquake and ruin a source of data. Additionally, charging phones are often stationary. They won’t be affected by motions that mimic earthquakes.

Google “listens” to charging devices in an area. If the subset meets the criteria for an earthquake, the company quickly determines the earthquake’s epicenter (based on approximate location) and magnitude. Once the system declares that a quake is indeed happening, it sends out an alert to nearby devices and gives them the time needed to seek shelter.

The alerts naturally prioritize people nearer to the epicenter. But, of course, the speed will ultimately depend on the phone’s connectivity. A phone hooked up to a building’s fast Wi-Fi connection will receive alerts faster than a commuter’s phone on data while going through a tunnel.

Still, the short time that the alerts give users is enough to save themselves from a precarious situation. Though the feature can potentially warn users of quakes minutes in advance, Stogaitis says that it will more realistically push alerts five to ten seconds before the incident. However, five seconds is enough to go under a table and have some sort of protection against falling debris.

Still keeping things private

For anyone worrying about how Google is handling their data, Stogaitis says that the company removes all identifiers from the data except for approximate location. And, despite that, Google still maintains that the feature will be the most accurate that it can be. Either way, the feature will be useful for any earthquakes in the future.

The earthquake sensor is available for any Android phone running Lollipop and above. Naturally, the feature still necessitates that users turn on emergency alerts on their phone.

Continue Reading

Explainers

The industry’s next big thing: Cloud gaming explained

It’s gaming on the go, but for internet that’s not slow

Published

on

Everybody’s getting into gaming these days, and you can’t blame them. With the pandemic continuing its ravaging ways in the world, people turn to their consoles or PCs for some action. However, not everyone can afford all the expensive PCs and the next-gen consoles when they come out.

Instead, a new player comes into the fray with a pretty great idea. What would happen if you can just play your favorite games from any device? Also, what if we told you that this won’t take up space on your device at all? This is basically what cloud gaming offers to you: a way to play games from any device at any time!

So, how does that actually work? What do you need to ensure quality gameplay, and should you even consider it?

The basics of playing on a cloud

On paper, it’s pretty easy to understand how cloud gaming works. Basically, you have access to a library of games from a cloud storage service. When you subscribe to the service, you can virtually play your library from any device regardless of the specs. Also, you don’t have to worry about storage problems since these games are stored on a server.

It’s no joke when these companies tell you that you can play your games on any device. With their dedicated data servers, they make sure that the games run smoothly once you access them from the cloud. On your end, you will need a strong and consistent internet connection to play the games smoothly.

Several companies already have cloud gaming software available for people to subscribe to. Some examples include NVIDIA’s GeForce Now, Microsoft’s xCloud, and Google Stadia — all of which store PC games on a server. These companies even take the time to update their server hardware every so often to bring the best possible quality.

System requirements for cloud gaming

Much like your ordinary PC or gaming console, companies that run cloud gaming servers need certain equipment to run smoothly. First, these companies must set up active data centers and server farms that run the games. These data centers ensure that games are up and running, while reducing latency. In other words, these serve as the powerhouse of cloud gaming.

Next on the list is the network infrastructure necessary to send these to the users. To ensure that people don’t experience lags when they play their games, companies also invest in acquiring proper data connections. However, in most cases, this isn’t something these companies have control over; it’s mostly coming from their available internet service providers.

On the front-end, companies also provide dedicated hardware and software to house the cloud. For example, NVIDIA integrated GeForce Now into their own cloud streaming device, the NVIDIA Shield back in 2013. Meanwhile, Google Stadia relies heavily on using pre-existing Google software like Google Chrome and the Stadia App.

Something great to offer, for the most part

Cloud gaming services offer something unique in the industry. Essentially, it eliminates the user from investing so much into buying expensive PCs as it allows people to play from virtually any device. Whether it’s on a smartphone, laptop, or even a smart TV, people get access to games at high frame rates without an RTX 3080.

Furthermore, the game and save files are stored on the cloud, and don’t take up any storage on your devices. This is greatly beneficial for people who are already running on limited storage space, especially if they play Call of Duty: Warzone. With everything stored on the cloud, you don’t need most of the 512GB of SSD storage.

However, one of the biggest issues with cloud gaming revolves around the thing it’s based on: the internet. Specifically, it’s on the user’s internet connection as these services require the fastest internet to run smoothly on any device. Basically, you will need either an Ethernet or a 5G wireless connection to ensure the lowest latency possible.

That infrastructure isn’t readily available in most markets, which is a prominent issue among several third-world countries. Furthermore, even if there are companies that have 5G in their pipeline, these same providers also put data caps on it. Even if the user can play at an optimal frame rate, they’re doing so with a restriction in place.

Does this new player have any place?

With the world continuously opening its arms to the gaming industry, innovation becomes the forefront of success. Companies come up with a variety of gaming technologies that seek to cater to a wide variety of people. From individual hardware to pre-built systems, gaming often revolved around these things.

With cloud gaming, it gives people not just another option within the mix. Rather, it seeks to challenge the notion of availability and accessibility, and give it a viable solution. Essentially, it takes away the physical hardware limitations on the user’s end, and makes it available for everyone.

But like most gaming technologies, everything is still limited somehow. These systems still experience bottlenecks both on the manufacturer and the user’s end. In the end, it will depend on how much you’re willing to shell out for them, and how willing you are to accept the risks.

Illustrations by Raniedel Fajardo

Continue Reading

Trending